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Abstract. A rapid method for determining whether the real quadratic field X 
6(v'P) has class number one is described. The method makes use of the infrastruc- 
ture idea of Shanks to determine the regulator of X and then uses the Generalized 
Riemann Hypothesis to rapidly estimate L(1, X) to the accuracy needed for determining 
whether or not the class number ofJTZ is one. The results of running this algorithm on 
a computer for all prime values of D up to 109 are also presented, together with further 
results on runs on intervals of size 107 starting at lO (i = 9, 10,... 16). 

1. Introduction. Let D be a square-free positive integer and let X = d(@) 
be the real quadratic field formed by adjoining y'ii to the rationals S. While it is 
known that there are only 9 complex quadratic fields with class number one, it has 
been conjectured since Gauss that there are an infinite number of real quadratic 
fields with class number h equal to one. In spite of the immense amount which 
has been learned about quadratic fields since the time of Gauss, this conjecture 
seems still to be extremely difficult to prove. An interesting recent development 
concerning this problem is the collection of heuristics introduced by Cohen and 
Lenstra [1]. Among other things their results suggest that the probability that the 
odd part of the class group of X is one is about 75.446%. 

If p is a prime and h is the class number of e(1fti), then 2 t h. Thus, in view of the 
Cohen-Lenstra heuristics, we would expect that the probability that h(d(V/pi)) = 1 
is 75.446%. In Tennenhouse and Williams [9] this was tested numerically for all 
primes up to 108. Unfortunately, the techniques used to find the results presented 
in Table 1 of [9] required hundreds of hours of computer time to run. In this 
paper we describe a further numerical investigation into this problem for all primes 
up to 109. Our new algorithms run much more quickly than those used in [9]; 
however, we must assume the Generalized Riemann Hypothesis (GRH) on B in 
order to determine whether or not h = 1. This assumption, together with several 
refinements of our previous algorithms, allowed us to examine over 50000000 fields 

6t(V/pi) with p < 109 in a little less than 80 hours of computer time. 
The purpose of this paper is to describe our improved algorithms and to present 

the results of our computer run. Our basic plan of attack is similar to that of [9]. 
We use the analytic class number formula 

2hR =-L(1X) 
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where R is the regulator and A\ is the discriminant of X. Setting r = 1 when 
D _ 2,3 (mod4) and r = 2 when D 1 (mod4), we have A\ = 4D/r2. The 
problem is now one of determining R and then finding L(1, X) to sufficient accuracy 
to guarantee whether or not h = 1. In Section 2 we describe a very expeditious 
algorithm for determining R in O(D1/4+,) elementary operations. In Section 3 we 
discuss how to use the Euler product representation 

L(1, X) = H q/(q -(Aq)), 
q 

where the product is taken over all primes q and (Z/q) is the Kronecker symbol, 
to approximate L(1, X) to the desired level of accuracy. 

2. Computation of R. In this section we will derive our algorithm for de- 
termining R. This algorithm is based on the infrastructure ideas of Shanks [6] 
as implemented by Williams and Wunderlich [11] and Stephens and Williams [7], 
[8]. For a somewhat different approach to Shanks' ideas we refer the reader to the 
papers of Lenstra [3] and Schoof [5]. Our main objective here will be to improve 
somewhat the regulator algorithm presented in Section 3 of [7]. As much of this 
material is given in [11], [7] and [8], our treatment will be quite brief. Proofs of the 
many statements given here can be found in these papers. 

As in [11], [7] and [8], we let Po, Qo E Z be such that Qo D - P2 and put 
0 = q)o = (Po + v/D) /Qo. By putting**qo = [J0o] and using the well-known formulas 

Pk+1 = qkQk -Pk, 

(2.1) Qk+i = (D- Pk2+1)/Qk, 

qk+l = [(Pk+l + V)/Qk+l] ?1 (k = O1, 2, . ..), 
we can expand X into the simple continued fraction 

Q=qo + 1 

q1 + 

q2 + +1 

qm_1 + 

where Okm = (Pm + V7h)/Qm. 
If we put 01 = 1 and 

n-1 

(2.2) 0n = rJ 7J. 
i=n 1 

then 

(2.3) Onan = (-l)n-lQni1/QO 

and 

(2.4) On = (-l)n-1(Gn-2- v/DBn-2)/Q0t 

**Here, as is usual, we use [a] to denote that integer such that a - 1 < [a] < a. We also use 
a to denote the conjugate of a e 
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where 

(2.5) Gk = QoAk - PoBk = Pn+1Bk + Qk+lBk-1. 

Here, A-2 = 0, A-1 = 1, B-2 = 1, B-1 = 0 and 

(2.6) At+i =qi+,Ai +A 1, B1ii =qi+,Bi+B B (i -1, 0,1, 2,... ). 

If we put P/i = I(q )1I and in = O1nl, then by (2.1) 

hi= j(Pi + v7D)/Qi-ll 

and 
n-1 

(2.7) n= J7Ji. 
i=1 

Also, by (2.4) and (2.5) we have 

(2.8) an = I(Gn-2 + VKBn-2)/QoI 
= I(Bn-2(Pn-1 + VD) + Qn-1Bn-3)/QoI. 

For a, ,f E A, denote by [a, ,3] the module aZ + 3Z. For w = (r- + 1? @')/r, 
we have 

X= [1,wJ, 

where 5 is the maximal order of X. If we put qo = w, then 

a- = [Qi-,/r, (Pi-1 + x/ii)/r] 

is a principal ideal of &jzy. Further, if 

(2.9) (U)c = aat, 

where U E Z and c is a primitive ideal of Ago then c = cl is a principal ideal of A. 
Let c1 = [Q'/r, (Po + v?P)/r]; if we expand O/ = (PO + VIP)/QO into a continued 
fraction there must be a least m (> 0) such that 0 < Qm < d = [v/2]. As pointed 
out in [7] and [8], we have cm+i = ak for some k > 1 and 

(2.10) Ok = QsItiM+1/U 

If A = log(T'I+1/U), then by using the results needed to obtain (3.5) of [7], we 
have 

(2.11) -log Qs-iQt-l < A < log 2. 

For the sake of brevity, we will use a, * at to denote the pair (ak, T' 1/U) produced 
by this process. The algorithm of Shanks given in Section 3 of [7] can be used to 
find c and U and the formulas (2.6) and (2.8) can be used to find 

A 1 = B' 1(Pm + VrD) + Q' B'2/Q. 

Since B' increases with increasing k and B' -1 < Q'/IV (Theorem 4.2 of [7]), 
this computation is easily performed. 

In the continued fraction expansion of w there is a least p e Z+ such that 

ap+l = al,. 
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Indeed, for this value of p we have ai = aj if and only if p I i - j. Also, Tp+1 = E 

(> 1), the fundamental unit of X, and 

R = log Up+ 

is the regulator of X. If we define 

6m = 6(a., a,) = logIF 

then R = 8p+1. For a = [a, A3] an ideal of o,, define -a to be the conjugate ideal 

[oi, 3]. By [8] we know that am = ap+2_m when m < p + 1; thus, by using the 
method used to derive (3.1) of [8] we have 

(2.12) 6m = 6(am, a,) = R - 8m + log(Qm-./r). 

We also note that 8m is a strictly increasing function of m and that 8m is a strictly 
decreasing function of m. Further, by results in [8] we know that 8m > (m- 2) log T, 

where r = (1 + V5-)/2. We now have 

LEMMA 2.1. If Ct = dk and 1 < i, k < t, then we must have either 

(2.13) QM = Qm+i for some positive m < t - 1 

or 

(2.14) Pn = Pn+1 for some positive n < t -1. 

Proof. By Corollary 2.1.1 of [8] we have a. =dk = awp+2-k; thus 

wp = i + k-2 (w > 1) 

and 
p < 2t- 2. 

Since p = 2n or p = 2m + 1, the lemma follows. D 
Again, by results given in [8] we see that if m is the least positive integer such 

that (2.13) holds then 
R = log 

I'm+2/im~+1; 

hence, by (2.3) we get 

(2.15) R = log(Om+,Qo/Qm) + 28m+i. 

If n is the least positive integer such that (2.14) holds, then 

R = log J~n+1/Tn+l 

and 

(2.16) R = log(QO/Qn) + 28n+1 

Suppose we select some a, such that ,c+log D < 6, < R (,c > 0) and Qs-i < a 

Put (bi,X,) = a, * a, If 6& = 8(b1,a,) and A1 = logX1, then by (2.10) and (2.11) 
we have 

(2.17) 6= 268 + A 

and 

(2.18) -logD <A, <log2. 
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If we define (b+i,A-+i) = b. * b1, 8* = 8(b-, a.) and A-+, = logX.+i, we get 

(2.19) 6*= 8 + 68 + Ai+, 

and 

(2.20) -logD < A,1 < log 2. 

It follows from (2.17), (2.18), and (2.20) that 

68 + 
At+1 

= 
26, 

+ A1 + A.+1 > 2r, > 0; 

hence, 6; increases without limit with increasing j. If M = (log4v'IU)/2, then 
M > log 2 and 

R+M > 8,+Al; 

thus R + M + 6, > 68. It follows that there must exist some j > 1 such that 

(2.21) 3* < R + 8s+M<81+. 

THEOREM 2.2. Let 59 = {ca,| 1 < i < t}. If (2.21) holds and 6t+l > M+8,, 
then bj E 5i2 

Proof. We first note that if 

6<8 6 <?t+ RI 

then b3 E 5?. From (2.21), (2.19), and (2.17) we get 

(2.22) R +M--88-A1-A3+1 <8 ?R+ 68+M<R+ 6t+1. 

If Qt/Qo < v', then 

2M > log 4v'iii = 2 log 2 + log 15 > A1 + At+1 + log(Qt/Qo). 

If Qt/Qo > VA then by (2.1), Qt+i/Qo < v/i5 and 

2M > A1 + A3+1 + log(Qt+1/Qo). 

Thus, by (2.22) and (2.12) we have 

6* > R - 68 - M + log(Qt/Qo) > 6t+ 

or 

> R - 6, - M + log(Qt+ /Qo) > 86. 

Now if 6^ = 1+l, we have Q = Qt > VD, where b3 = [Q/Qo, (P + Vi)/Qo]. 
Since this is not possible by construction of b3, we can only have 8,* > 6,'. Thus 

bj E5?. D 

COROLLARY. Suppose 6t+l > M + 6, and (2.21) holds. If b3 = ai for some i 
(1< i t), then 

R = 6J - 6t. 

If b3 : a, for some i (1 < i < t), then b3 =-a, for some i (I < i < t) and 

R = 8I - 6 - log(Q,1 /Qo). 
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Proof. The first part of the Corollary follows easily from the theorem. If b1 0 at 

(1 < i < t), then by the theorem we must have bj = di for some i (1 < i < t); 
hence, 6j* < R. From (2.12) it follows that 

R = 6j* + 82 - log(Qi- -/Qo). E[ 

We are now able to present our 

ALGORITHM FOR COMPUTING R(D > 106). 

Initialization 
Select a value for a constant c (c > 1). Put L - [cD1/4J + 1, T = 
1 + [log 4y'ii/(2 log r)]. 

Step 1 
By developing the continued fraction of w, compute and store those ideals 
ai = [Qi-1/r, (Pi-1 + v'D)/r], where i < t and Qj-i < d. These ideals 
are stored as pairs (Qi-, ,Pi-1) which are sorted lexicographically. Call 
this list of ideals S5. Here, t = s + T, where s is selected such that s = L 
or L + 1, whichever has Qs-, < d. (In view of (2.1) this must occur for at 
least one of the values L or L + 1.) If P, = P,+1 for a minimal positive 
n < t - 1, then 

R = log(Qo/Qn) + 2 log In+l 

and we can terminate the algorithm. If Qm = Qm+1 for a minimal positive 

m < t - 2, then 

R = log(Qo/m+l /Qm) + 2 log Vm+i 

and we can terminate the algorithm. 

Step 2 
Compute (bi, Xi)a, * a,. Put X1 = 1, j = 1. 

Step 3 (test step) 

If bj- ET, then 

R = 2jlog Us +jlogxl + logXj - log'4'i 

and we can terminate the algorithm. If b3 E , then 

R = 2jlogl'8 +jlogX, + logXj + log'4j -log(Qili/Qo) 

and we can terminate the algorithm. 

Step 4 
Put 

(bj+l Xj+i) =bj*b3, 

Xj+l = XjXj+i, 

j +l 

and go to Step 3. 

Proof of Correctness. Certainly, if the value of R is determined by Step 1, then 

it is correct by (2.15) or (2.16). Suppose that this is not the case; then 6s < R. 
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Also, since (D1/4 - 2) logT > .4 + logD when D > 106, we have 6, > ', + logD 
= .4 > 0). By the Corollary of Lemma 2.1 of [8] we have 

6t+1 =6s+T+1 > 6+Tlogr > 6+M, 

where A! = log 4 v1'i/(2 log T). Thus, by Theorem 2.2 we must get some j such that 

bj E5. From (2.19) we have 

j ~~~~~~~j 
6 = j6 + Ai = 2j6s + jAi +Z A 

t=2 i=2 

= 2j log As + j log Xi + log X); 

thus, by the Corollary of Theorem 2.2 we see that the algorithm computes R cor- 
rectly. We also point out that by virtue of Lemma 2.1 we cannot have both b. and 
bi in S. D 

This algorithm has the same order of complexity O(Dl/4+-) as that given in [7]. 
The main difference here is that by using the same amount of storage space, we can 
step through our new algorithm in steps of size about 268 instead of 6,. In practice, 
this improves the speed of the algorithm by a factor of about 35%. 

3. Determination of When h = 1. Given the value of R, one can use the 
method of Williams and Broere [10] to determine h. However, the difficulty in 
using this technique is that it is very time-consuming. Since our concern here is to 
examine a great many fields, a more expeditious method is needed. As mentioned 
in the introduction, the problem is to estimate L(1,x) sufficiently accurately that 
it should be possible to ascertain whether or not h = 1. In order to do this here, we 
make use of Oesterle's [4] effective version of the Chebotarev density theorem. It 
must be emphasized, however, that for any given field X = d'(v'Di), this assumes 
the truth of the GRH on f X. Thus, the method that we will describe here is correct 
if the GRH holds for all of the values of the radicand D that we consider. 

For a given field % we set 

Q 
F(Q)= f q/(q-(tX/q)) 

q=2 
q prime 

and 

T(Q) = J q/(q - (A/q)); 
q>Q 

q prime 

then 

(3.1) h = (F(Q)T(Q)V'A)/2R. 

Put h-Ne(F(Q)v"&/2R), where by Ne(x) we denote the nearest integer to x. 
Our problem is to be able to determine that value of Q such that if h = 1, then 
h = 1, and if h i 1, then h ( 1. 
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Now if e(q) = (//q), we have 

Ilog T(Q)j = - : log(1 - e(q)/q) < j (s(q)/q + 1/q2) 
q>Q q>Q 

< Z c(q)/q + 1/Q. 
q>Q 

By setting 

C(x) = log z\{1/(7rlogx) + 5.3/(logx)2} + 4/logx + 1/7r, 

we can use the idea of Cornell and Washington [2] to show that 

E 6(q)lq < C(Q) (4 +3log Q)/-,/Q 
q>Q 

If we put 
B(Q) = C(Q)(4 + 3 log Q)/ + 1/Q, 

then I log T(Q)I < B(Q) under the GRH on X. 
We now require two simple lemmas. 

LEMMA 3.1. If I logxi < log(2/(1 + yIY)), where IYI < 1/2, then 

1/(2+y) < x < 2/(1 +y). 

Proof. Since 
log((1 + JyI)/2) < log x < log(2/(1 + IyJ)), 

we have 

(1 + IyI)/2 < x < 2/(1 + IyI). 
Now 

(1 + IyI)/2 > 1/(2 - IYI) > 1/(2 + y), 
and 

2/(1 + IYI) < 2/(1 + y); 
hence, the lemma follows. [ 

LEMMA 3. 2. If T = (F(Q) V'X)/2R-h and 1/(2 + T) < T(Q) < 2/(1 + T), then 
h = 1 if and only if h = 1. 

Proof. We first note that from (3.1) we get 

h-h = h(l-T(Q)-') + T and h=hT(Q) - T. 

Since ITI < 1/2, we have 

T < (1 + T)/2 < T(Q)-1 < 2 + T; 

thus, if h = 1, we get 0 < h < 2 and therefore h= 1. 
If h = 1, then 

h = (T + 1)T(Q) < 2 

andh=1. O 
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If we now combine the results obtained above, we see that if A < B. where B is 
some preassigned bound, and 

r = (F(Q)v?&)/2R - h, A(Q) < log 2/(1 + Ir), 

where 

A(Q)=_ 4 log B 21.2 log B 15.9 log B 3 log B 
A(Q) ~+ + + 

-7r"Q log Q V/Q~og Q)2 IQ log Q -7r+ 

+ 16 + 4 12 +3logQ 1 
+ Q +log Q 7r+/Q X 7/ Q 

then h = 1 if and only if h = 1. 
In Tables 3.1 and 3.2 below we give for selected values of t and B, a prime Q 

such that A(Q) < log(2/(1 + t)) and the number of such primes 7r(Q) up to Q. 

B-=109 (for D < 109,D 1 (mod 4)) 

t prime Q 7E(Q) 

.001 15299 1787 

.005 15461 1806 

.01 15667 1828 

.05 17443 2006 

.1 20111 2263 

.2 26729 2934 

.3 36653 3886 

.4 52103 5328 

.5 77929 7656 

TABLE 3.1 

B =4x 109 (forD< 109,D-=2, 3 (mod4)) 

prime Q 2(Q) 

.001 16673 1929 

.005 16843 1949 

.01 17077 1969 

.05 19001 2159 

.1 21787 2444 

.2 29101 3163 

.3 39901 4196 

.4 56671 5746 

.5 84731 8257 

TABLE 3.2 
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Thus, if we wish to determine whether or not h = 1, we need only select the 
appropriate B, a value of t and evaluate h and T. If IjI < t and h = 1, then h = 1; 
if ITI < t and h $ 1, then h $ 1. If ITI > t, select the next t value until a value of 
T is obtained such that IlI < t. In the next section we will discuss several details 
involved in the computer implementation of this algorithm. 

4. Computer Implementation and Results. The algorithms for determin- 
ing R and when h = 1 were coded in assembly language (double-precision floating 
point was used for the accumulation of R and F(Q)) and run on an Amdahl 5870 
computer. In this section we discuss some of the techniques which were used to get 
the best possible performance out of these algorithms. 

In order to calculate log o1k or log Xk efficiently, we did not compute E.=7l log /i 

or Ekj1 logXi, i.e., a sum of logarithms. Since the logarithm routine is fairly ex- 
pensive, we instead accumulated the products Hf-i1 ./i and H=11 Xi and then took 
the logarithm of the product. However, since these products can get large enough 
to overflow a floating-point register, it was necessary to keep the exponent and 
fractional parts of the products separate. Each time a new term was multiplied to 
a product's fractional part, the resulting exponent was separated out and added to 
an integer sum-of-exponents variable (the fraction's exponent was set to 0). Taking 
log(frac x 16eXP) = log(frac) + (exp) log 16 was easy as log 16 was precalculated. 
Thus only one log call was ever needed to evaluate a particular log o1k or log Xk. 

As was done in [7] and [8], instead of actually conducting a preliminary sort in 
Step 1 of the Regulator Algorithm and then using a binary search, say, to determine 
whether or not b E Y, we used hashing techniques. In practice, these searches can 
be much more rapidly undertaken by hashing on the last byte of the Q values. 

In order to determine a good value of c to be used in the initialization step of 
the Regulator Algorithm, we conducted some preliminary numerical experiments. 
We summarize the results of these in Table 4.1. 

I J C ti t3 
107 1o6 1 21.40 

1.25 20.89 25.24 

1.5 20.92 24.70 

1.75 21.47 24.60 

2 22.18 25.01 

2.25 24.12 

109 5x1O5 1 26.59 35.17 

1.25 25.28 31.97 

1.5 24.94 30.59 

1.75 25.24 30.02 

2 25.94 30.16 

TABLE 4.1 

For the value of c given in the third column we give the total time t, in seconds 
needed to compute R for all of the prilcmes i (mod 4) in the interval [I, I + J]. As 
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a result of these calculations, we used c = 1.5 when D -1 (mod 4) and c = 1.75 
when D -3 (mod 4). 

Tests showed that the early implementations of our algorithms were very slow. 
In fact, over 95% of the time was being spent in the evaluation of F(Q). This was 
because our routine for evaluating (L\/q) was too slow, no matter what we tried. 
(We used variations on both the Jacobi method and the Euler criterion/power 
algorithm technique.) Our solution to this problem was to calculate F(Q) for all 
D in a fixed interval under the assumption that iTn < .01. We did this by first 
precalculating all the quadratic residues for all the primes up to Q when t = .01 
(see Tables 3.1 and 3.2). We could then use this information to rapidly accumulate 
F(Q) for each D in the interval by multiplying each F(Q) by q/(q - (A/q)) with 
a single array look up. If it was necessary to go to a larger Q value (ITI > .01), 
we simply continued our computations on those particular D by using the Euler 
criterion/power algorithm technique to determine (A/q). By using an interval size 
106 we cut our estimate of time needed to run this part of our program on all prime 
values of D up to 109 from 225 hours to 38 hours. 

We also ran tests to see how frequently the use of t = .01 was good enough for 
determining when h = 1. We provide the results of these tests in Table 4.2. For 
these tests we used an interval size of 105. 

Here, ni is the number of primes -i (mod 4) in the interval between I and 
I + 105 for which we could determine whether or not h = 1 using the IrT value given 
in the second column. Notice that 99% of the primes could be dealt with when 
t = .1 and over 90% could be handled with t = .01. 

I|| n n3 

7O~ .01 2778 (90Q) 2820 (92Xo) 

.05 251 (No) 194 (6 ) 

.1 30 (1%) 25 (1%) 

.2 12 17 

. 3 4 3 

.4 0 0 

.5 --Q0 

3075 3059 

109 .01 2196 (91%) 2235 (92%/) 

.05 173 (7 ) 151 (6o) 

.1 29 (1%) 24 (1%) 

.2 1 0 6 

.3 1 4 

.4 1 1 

.5 1 0 

2411 2421 

TABLE 4.2 
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C) 
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D 200 4DO 6boD Bo 100oo 
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FIGURE 4.1 

As mentioned above, we ran our programs for all prime values of D < 109. For 

those prime values 1 (mod 4) we required a total of about 36 hours of computer 

time and for those 3 (mod 4) we required a total of about 39.5 hours. 

Denote by 7r(i, 4; x) the number of primes up to x which are congruent to i 

(mod 4) and denote by f(i, 4; x) the number of those primes counted by 7r(i, 4; x) 

such that the class number of the corresponding real quadratic field is one. Put 

R(i, 4; x) = f(i, 4; x)/7r(i, 4; x). 

6 
x/10 wr(-1.4:x) f(-1,4:x) R(-1.4:x) wr(+1.4:x) f(+1.4:x) R(+1.4:x) 

10 332398 255697 0.7692495 332180 256346 0.7717081 
50 1500681 1148210 0.7651260 1500452 1151040 0.7671288 

100 2880950 2201430 0.7641334 2880504 2205113 0.7655303 
150 4222411 3223457 0.7634162 4221984 3228344 0.7646509 
200 5540116 4226819 0.7629477 5538820 4233706 0.7643697 
250 6840343 5216929 0.7626707 6838974 5225613 0.7640931 
300 8126606 6195760 0.7624044 8125718 6206614 0.7638235 
350 9402353 7166342 0.7621860 9401172 7177686 0.7634884 
400 10668718 8129627 0.7620060 10667607 8142331 0.7632762 
450 11927101 9086081 0.7618013 11925936 9100975 0.7631246 
500 13179058 10037729 0.7616424 13176808 10052888 0.7629229 
550 14423312 10983002 0.7614757 14422043 11000483 0.7627548 
600 15662772 11925126 0.7613675 15661930 11943522 0.7625830 
650 16897400 12863448 0.7612679 16895994 12882297 0.7624468 
700 18127414 13799009 0.7612233 18125516 13817870 0.7623435 
750 19352799 14730095 0.7611351 19350381 14749979 0.7622578 
800 20573718 15658228 0.7610792 20572460 15679417 0.7621557 
850 21791649 16584780 0.7610613 21790316 16605975 0.7620805 
900 23005255 17505721 0.7609444 23003959 17528770 0.7619893 
950 24215752 18425396 0.7608847 24215718 18449756 0.7618918 

1000 25424042 19343291 0.7608267 25423491 19368166 0.7618217 

TABLE 4.3 
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FIGURE 4.2 

In Table 4.3 we give some excerpts from our calculations of R(i, 4; x). During the 
process of conducting these investigations we noticed two errors in Table 1 of [9]. 
The values for f(1, 4; x) are all too small by 1 because the program used to produce 
this table did not get the correct value of h for D = 5. (It obtained h = 0, not 1, and 
since the program only produced a count, this error was not noticed at the time.) 
The values for 7r(1, 4; x), f(1, 4; x) and r(1, 4; x) are incorrect for x = 25 x 106; this 
was due to an error in copying from the larger table produced by machine to the 
smaller Table 1. 

We also provide some graphs of R(i, 4; x) in Figures 4.1 and 4.2. 
At the suggestion of Henri Cohen we also attempted to fit our values of R(i, 4; x) 

(i = 1, -1) to a curve of the form a + bx-. This was done by using a golden ratio 
search technique to determine that a value which yielded the minimum error, where 
by the error we mean the sum of the squares of the vertical deviations of the data 
points (xm, R(i, 4; x)) with x = 105j and j = 1,2, 3, .. ., 104 from the least-squares 
straight line fitted to those points. In Figures 4.3 and 4.4 we show plots of R(i, 4; x) 
against x- for the a value that we obtained. On the same figures we have also 
drawn the least-squares straight line described above. Notice that in both cases 
the y-intercept is somewhat larger than .75446. This, of course, could be the result 
of the naivety of our assumption that R(i, 4; x) can be accurately described by a 
curve as simple as y = a + bxu. 

For given fixed interval size I let 

7r'(i, 4; x) = r(i, 4; x + I) - 7(i, 4; x), 

f'(i, 4; x) = f(i, 4; x + I) - f(i, 4; x), 
R'(i, 4; x) = f'(i, 4; x)/ir'(i, 4; x). 
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distributed, we wrote a higher-precision version of the programs described above 
and sampled intervals of size I = i07 at values of x = lOi (i = 9, 10, 11, . .. ,16). 
In Table 4.4 we present the results of these calculations. By t(i, 4; x) we denote 
the time in minutes that our programs required to determine R' (i, 4; x). In spite 
of some fluctuations, it still appears that the overall tendency of R(i, 4; x) is to 
decrease. Indeed, none of the calculations presented here seems to provide any 
inconsistency with the belief that R(i, 4; x) tends to approach .75446 very, very 
slowly. 



REAL QUADRATIC FIELDS WITH CLASS NUMBER ONE 823 

R (-1,4; X) 
C:o. 7 5 0.76 0.77 0.78 0.79 0.80 0.81 

Ci 

o \i 

Ci 

CD 

:) 9 

C CD 

CD 

(D .~ 

CD_ 

m c1 . 

CD 

Ln '1 \ 
CD 

Fri 

CD- 
CD 

CD 

I-4 

CD_ 

CD_ 

1 241505 183299 .75899 53 240944 183084 .74986 50 
10 271319 164904 .75881 61 217331 164650 .75760 55 

102 197381 149300 .75641 72 197020 149039 .75647 63 
1O3 180913 136536 .75504 94 180813 136567 .75513 82 
1O4 167168 126296 .75550 138 167144 126234 .75524 117 
105 155353 117451 .75603 226 155229 117163 .75478 200 
106 144816 109113 .75346 465 144578 109414 .75678 430 
107 135906 102648 .75529 976 135991 102811 .75601 963 

TABLE 4.4 



824 A. J. STEPHENS AND H. C. WILLIAMS 

Department of Computer Science 
University of Manitoba 
Winnipeg, Manitoba, Canada R3T 2N2 

1. H. COHEN & H. W. LENSTRA, JR., "Heuristics on class groups of number fields," Number 
Theory (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin and 
New York, 1984, pp. 33-62. 

2. G. CORNELL & L. C. WASHINGTON, "Class numbers of cyclotomic fields," J. Number 
Theory, v. 21, 1995, pp. 260-274. 

3. H. W. LENSTRA, JR., "On the calculation of regulators and class numbers of quadratic 
fields," London Math. Soc. Lecture Note Ser., v. 56, 1982, pp. 123-150. 

4. J. OESTERLE, "Versions effectives du theoreme de Chebotarev sous l'hypothese de Riemann 
gbndralis&e," Aste'risque, v. 61, 1979, pp. 165-167. 

5. R. J. SCHOOF, "Quadratic fields and factorization," Computational Methods in Number Theory 
(H. W. Lenstra, Jr. and R. Tijdemann, eds.), Math. Centrum Tracts, Number 155, Part II, 
Amsterdam, 1983, pp. 235-286. 

6. D. SHANKS, "The infrastructure of a real quadratic field and its applications," Proc. 1972 
Number Theory Conference (UJniv. Colorado, Boulder, 1972), pp. 217-224, Univ. Colorado, Boulder, 
1972. 

7. A. J. STEPHENS & H. C. WILLIAMS, "Some computational results on a problem concerning 
powerful numbers," Math. Comp., v. 50, 1988, pp. 619-632. 

8. A. J. STEPHENS & H. C. WILLIAMS, "Some computational results on a problem of Eisen- 
stein," Proc. International Number Theory Conf., Laval University, Qubbec, 1987. (To appear.) 

9. M. TENNENHOUSE & H. C. WILLIAMS, "A note on class-number one in certain real 
quadratic and pure cubic fields," Math. Comp., v. 46, 1986, pp. 333-336. 

10. H. C. WILLIAMS & J. BROERE, "A computational technique for evaluating L(1, X) and the 
class number of a real quadratic field," Math. Comp., v. 30, 1976, pp. 887-893. 

11. H. C. WILLIAMS & M. C. WUNDERLICH, "On the parallel generation of the residues for 
the continued fraction factoring algorithm," Math. Comp., v. 48, 1987, pp. 405-423. 


